The Effect of Introduction of the Non-linear Calibration Function at the Input of the Neural Network
نویسنده
چکیده
First, a process of building of the neural network for events forecasting is presented, that is the selection of networks’ architecture and parameters. Next, the effect of adding data calibrated by nonlinear input function to input data calibrated linearly is described. The nonlinear input function hyperbolic tangent was accepted. Hyperbolic tangent sigmoid transfer function and log sigmoid transfer function are commonly used as transfer functions in neural networks.
منابع مشابه
The relationship between Neural Networks and DEA-R (Case Study: Companies Stock Exchange)
Evaluate the performance of companies on the Stock Exchange using non-parametric methods is very important. DEA and DEA-R with the strategies for piecewise linear frontier production function and use of available data, assess the stock company. In this study, using a neural network algorithm DEA and DEA-R is suggested to classify the first companies in the stock exchange; Secondly, using the...
متن کاملIdentification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملESTIMATION OF GAS HOLDUP AND INPUT POWER IN FROTH FLOTATION USING ARTIFICIAL NEURAL NETWORK
Multivariable regression and artificial neural network procedures were used to modeling of the input power and gas holdup of flotation. The stepwise nonlinear equations have shown greater accuracy than linear ones where they can predict input power, and gas holdup with the correlation coefficients of 0.79 thereby 0.51 in the linear, and R2=0.88 versus 0.52 in the non linear, respectively. ...
متن کاملModeling heat transfer of non-Newtonian nanofluids using hybrid ANN-Metaheuristic optimization algorithm
An optimal artificial neural network (ANN) has been developed to predict the Nusselt number of non-Newtonian nanofluids. The resulting ANN is a multi-layer perceptron with two hidden layers consisting of six and nine neurons, respectively. The tangent sigmoid transfer function is the best for both hidden layers and the linear transfer function is the best transfer function for the output layer....
متن کاملUsing Neural Network to Determine Input Excesses, Output Shortfalls and Efficiency of Dmus in Russell Mode
Data Envelopment Analysis (DEA) has two fundamental approaches for assessing theefficiency with different characteristics; radial and non-radial models. This paper isconcerned the non-radial model of Russell which is a non linear model. Conventional DEAfor a large dataset with many inputs/outputs would require huge computer resources in termsof memory and CPU time. Artificial Neural Network (AN...
متن کاملComparison Study on Neural Networks in Damage Detection of Steel Truss Bridge
This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...
متن کامل